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SYSTEM AND METHOD FOR PERFORMING
NON-AFFINE DEFORMATIONS

BACKGROUND

1. Field of the Invention

The present invention relates to the field of computer
graphics and, in particular, to a system and method for per-
forming non-affine deformations.

2. Description of the Related Art

One core functional aspect of animation, simulation, or
rendering applications is converting geometric and/or math-
ematical descriptions of objects into images. This process is
known in the industry as “rendering.” For movies or other
feature films, a user (known as an animator) specifies the
geometric description of objects (e.g., characters) by assign-
ing poses and/or applying motions to the objects or to portions
of the objects. Additionally, the animator may perform vari-
ous transformations and/or deformations to the objects or to
portions of the objects.

As is known, many graphics applications allow fora graph-
ics scene to be represented as a hierarchy of objects. In a
typical graphics application, the hierarchy includes one or
more nodes connected to one another with links. In some
conventional graphics applications, a parent node in the hier-
archy may be connected to one or more child nodes that
inherit the characteristics of the parent node. In other embodi-
ments, the hierarchy may define a top-down geometric rep-
resentation of the character, where each node defines further
structural details of the character. For example, a “torso” node
may be a parent node that is connected to child nodes such as
a “left arm” node, a “right arm” node, a “left leg” node, and a
“right leg” node. The left arm node, for example, may then be
aparent node that is connected to child nodes such as “finger”
nodes. This type of geometrical hierarchy is commonly
referred to as a “transform hierarchy.”

One feature of transform hierarchies is the ability to per-
form affine transformations. An affine transform typically
includes performing linear transformations, such as rotating,
scaling, shearing, or translating, to the geometry that com-
prise the nodes in the transform hierarchy. Affine transforma-
tions are typically carried out by applying a transformation
matrix to points that define the geometry being transformed.

Another feature of some graphics applications is the ability
to create a different type of hierarchy for rendering the scene
known as a “data flow graph.” The nodes that make up the data
flow graph may represent atomic computations that are to be
performed on some portion of the geometry. The nodes may
then be strung together, forming the data flow graph. The
input to the data flow graph may be the unaltered and untrans-
formed object, while the output of the data flow graph may be
the output object that has been modified by passing through
one or more computational nodes. In some prior art systems,
data flow graphs are used to perform “non-affine” transfor-
mations to the geometry in the scene. Non-affine transforma-
tion operators, also referred to herein as “movers” and
“deformers,” modify or mold the shape of geometry in a
non-linear fashion. For example, an animated character may
be defined by a mesh of primitives that represents the skin of
the character. As the underlying joints of the character move,
the skin changes shape and deforms based on the movement
of'the joints. The deformations in the skin are often non-linear
and may be represented by a non-affine operator in a data flow
graph.

One problem with performing non-affine transformations
using a conventional data flow graph is that the deforming
process is very inefficient. In a typical situation, there may be
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hundreds or thousands of atomic computations strung
together in a data flow graph to perform a single non-affine
transformation of a singe object, causing the non-affine trans-
formation to be computationally expensive. Since the com-
putations that make up the non-affine transformation are geo-
metric computations, many of the computations occur in a
particular coordinate space. Some computational operators
are executed in a first coordinate space, while other compu-
tational operators are executed in a second coordinate space.
Additionally, in conventional approaches, the results of com-
putations must be propagated downward and affect subse-
quent computations on the data flow graph. These inherent
constraints on traditional data flow graph approaches create
classical inefficiencies, where data must be passed through
the entirety of the data flow graph and may be converted
between different coordinate spaces several times to accom-
modate the various coordinate spaces of the particular opera-
tors being executed. Since the computational operators can-
not make assumptions about other computations that are
being performed downstream, certain computations are per-
formed in case another operator may require certain data.
This redundancy in computation adds further complexity and
adds to the inefficiency of conventional data flow graph
approaches.

As the foregoing illustrates, there is a need in the art for an
improved technique for performing non-affine transforma-
tions.

SUMMARY

Embodiments of the invention provide a system and
method for performing non-affine deformations. Initially,
each of the points associated with a character to which the
non-affine deformation is applied is represented in local coor-
dinate space. Then, the points associated with the elements
that are affected by the non-affine deformer are selectively
converted to world coordinate space in preparation for the
deformation. Once the points associated with a particular
element are in world coordinate space, the points may remain
in world coordinate space until a parent element to that par-
ticular element is affected.

One embodiment of the invention provides a computer-
implemented method for performing non-affine deforma-
tions. The method includes receiving data representing math-
ematical vectors associated with elements that define an
object in a graphics scene, wherein the elements are orga-
nized in a hierarchical data structure, a different subset of
mathematical vectors is associated with one or more ele-
ments, and the mathematical vectors within each subset of
mathematical vectors are defined relative to a local coordinate
space associated with the element associated with the subset
of mathematical vectors; determining that a first non-affine
deformer is to be applied to a first set of the elements that
define the object, wherein the first set includes a portion of the
elements that define the object; and, for each element in the
first set, applying the first non-affine deformer to world coor-
dinate space values corresponding to the mathematical vec-
tors within the subset of mathematical vectors associated with
the element to generate modified world coordinate space
values for the mathematical vectors within the subset of math-
ematical vectors associated with the element.

Advantageously, embodiments of the invention provide an
improved technique for efficiently performing non-affine
deformations to elements included in a transform hierarchy
when compared to prior art techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the invention can be understood in detail, a more particular
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description of the invention, briefly summarized above, may
be had by reference to embodiments, some of which are
illustrated in the appended drawings. It is to be noted, how-
ever, that the appended drawings illustrate only typical
embodiments of this invention and are therefore not to be
considered limiting of its scope, for the invention may admit
to other equally effective embodiments.

FIG. 1 is a block diagram of a system configured to imple-
ment one or more aspects of the invention.

FIGS. 2A-2B are conceptual diagrams illustrating a trans-
form hierarchy and a deform hierarchy, according to various
embodiments of the invention.

FIG. 3 is a flow diagram of method steps for efficiently
applying non-affine deformations to elements in the trans-
form hierarchy, according to one embodiment of the inven-
tion.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Embodiments of the invention provide a system and
method for performing non-affine deformations. Initially,
each of the points associated with a character to which the
non-affine deformation is applied is represented in local coor-
dinate space. Then, the points associated with the elements
that are affected by the non-affine deformer are selectively
converted to world coordinate space in preparation for the
deformation. Once the points associated with a particular
element are in world coordinate space, the points remain in
world coordinate space until a parent element to the particular
element is affected.

FIG. 1 is a block diagram of a system 100 configured to
implement one or more aspects of the present invention.
System 100 may be a personal computer, video game console,
personal digital assistant, rendering engine, or any other
device suitable for practicing one or more embodiments of the
present invention.

As shown, system 100 includes a central processing unit
(CPU) 102 and a system memory 104 communicating via a
bus path that may include a memory bridge 105. CPU 102
includes one or more processing cores, and, in operation,
CPU 102 is the master processor of system 100, controlling
and coordinating operations of other system components.
System memory 104 stores software applications and data for
use by CPU 102. CPU 102 runs software applications and
optionally an operating system. Memory bridge 105, which
may be, e.g., a Northbridge chip, is connected via a bus or
other communication path (e.g., a HyperTransport link) to an
1/O (input/output) bridge 107. /O bridge 107, which may be,
e.g., a Southbridge chip, receives user input from one or more
user input devices 108 (e.g., keyboard, mouse, joystick, digi-
tizer tablets, touch pads, touch screens, still or video cameras,
motion sensors, and/or microphones) and forwards the input
to CPU 102 via memory bridge 105.

A display processor 112 is coupled to memory bridge 105
via a bus or other communication path (e.g., a PCI Express,
Accelerated Graphics Port, or HyperTransport link); in one
embodiment, display processor 112 is a graphics subsystem
that includes at least one graphics processing unit (GPU) and
graphics memory. Graphics memory includes a display
memory (e.g., a frame buffer) used for storing pixel data for
each pixel of an output image. Graphics memory can be
integrated in the same device as the GPU, connected as a
separate device with the GPU, and/or implemented within
system memory 104. In alternative embodiments, the display
processor may be a field-programmable gate array (FPGA),
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application-specific integrated circuit (ASIC), or other pro-
grammable and/or fixed function hardware.

Display processor 112 periodically delivers pixels to a
display device 110 (e.g., a screen or conventional CRT,
plasma, OLED, SED or LCD based monitor or television).
Additionally, display processor 112 may output pixels to film
recorders adapted to reproduce computer generated images
on photographic film. Display processor 112 can provide
display device 110 with an analog or digital signal.

A system disk 114 is also connected to /O bridge 107 and
may be configured to store content and applications and data
for use by CPU 102 and display processor 112. System disk
114 provides non-volatile storage for applications and data
and may include fixed or removable hard disk drives, flash
memory devices, and CD-ROM, DVD-ROM, Blu-ray, HD-
DVD, or other magnetic, optical, or solid state storage
devices.

A switch 116 provides connections between I/O bridge 107
and other components such as a network adapter 118 and
various add-in cards 120 and 121. Network adapter 118
allows system 100 to communicate with other systems via an
electronic communications network, and may include wired
or wireless communication over local area networks and wide
area networks such as the Internet.

Other components (not shown), including USB or other
port connections, film recording devices, and the like, may
also be connected to 1/O bridge 107. For example, an audio
processor may be used to generate analog or digital audio
output from instructions and/or data provided by CPU 102,
system memory 104, or system disk 114. Communication
paths interconnecting the various components in FIG. 1 may
be implemented using any suitable protocols, such as PCI
(Peripheral Component Interconnect), PCI Express (PCI-E),
AGP (Accelerated Graphics Port), HyperTransport, or any
other bus or point-to-point communication protocol(s), and
connections between different devices may use different pro-
tocols, as is known in the art.

In one embodiment, display processor 112 incorporates
circuitry optimized for graphics and video processing,
including, for example, video output circuitry, and constitutes
a graphics processing unit (GPU). In another embodiment,
display processor 112 incorporates circuitry optimized for
general purpose processing. In yet another embodiment, dis-
play processor 112 may be integrated with one or more other
system elements, such as the memory bridge 105, CPU 102,
and /O bridge 107 to form a system on chip (SoC). In still
further embodiments, display processor 112 is omitted and
software executed by CPU 102 performs the functions of
display processor 112.

Pixel data can be provided to display processor 112 directly
from CPU 102. In some embodiments of the present inven-
tion, instructions and/or data representing a scene are pro-
vided to a render farm or a set of server computers, each
similar to system 100, via network adapter 118 or system disk
114. The render farm generates one or more rendered images
of the scene using the provided instructions and/or data.
These rendered images may be stored on computer-readable
media in a digital format and optionally returned to system
100 for display. Similarly, stereo image pairs processed by
display processor 112 may be output to other systems for
display, stored in system disk 114, or stored on computer-
readable media in a digital format.

Alternatively, CPU 102 provides display processor 112
with data and/or instructions defining the desired output
images, from which display processor 112 generates the pixel
data of one or more output images, including characterizing
and/or adjusting the offset between stereo image pairs. The
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data and/or instructions defining the desired output images
can be stored in system memory 104 or graphics memory
within display processor 112. In an embodiment, display
processor 112 includes 3D rendering capabilities for gener-
ating pixel data for output images from instructions and data
defining the geometry, lighting shading, texturing, motion,
and/or camera parameters for a scene. Display processor 112
can further include one or more programmable execution
units capable of executing shader programs, tone mapping
programs, and the like.

CPU 102, render farm, and/or display processor 112 can
employ any surface or volume rendering technique known in
the art to create one or more rendered images from the pro-
vided data and instructions, including rasterization, scanline
rendering REYES or micropolygon rendering, ray casting,
ray tracing, image-based rendering techniques, and/or com-
binations of these and any other rendering or image process-
ing techniques known in the art.

It will be appreciated that the system shown herein is
illustrative and that variations and modifications are possible.
The connection topology, including the number and arrange-
ment of bridges, may be modified as desired. For instance, in
some embodiments, system memory 104 is connected to CPU
102 directly rather than through a bridge, and other devices
communicate with system memory 104 via memory bridge
105 and CPU 102. In other alternative topologies display
processor 112 is connected to 1/O bridge 107 or directly to
CPU 102, rather than to memory bridge 105. In still other
embodiments, I/O bridge 107 and memory bridge 105 might
be integrated into a single chip. The particular components
shown herein are optional; for instance, any number of add-in
cards or peripheral devices might be supported. In some
embodiments, switch 116 is eliminated, and network adapter
118 and add-in cards 120, 121 connect directly to /O bridge
107.

FIG. 2A is a conceptual diagram illustrating a transform
hierarchy 200 and a deform hierarchy 250, according to one
embodiment of the invention. As shown, the transform hier-
archy 200 includes a model 202. The model 202 includes a
body 204. The body 204 includes a head 206 and a torso 208.
The torso 208 includes a left arm 210, a right arm 214, a left
leg 218, and a right leg 220. The left arm 210 includes a left
hand 212. The right arm 214 includes a right hand 216. Each
element in the transform hierarchy 200 represents a series of
points that define geometric primitives or points associated
with the element. For example, the head 206 represents a
series of points defining the geometric primitives of the head
of'a character. In alternative embodiments, rather than being
represented by a series of points, the elements in the trans-
form hierarch 200 may be represented by vectors, rays, coor-
dinate frames, normals, or any other type of mathematical
vector used to represent data.

As should be understood by those having ordinary skill in
the art, the elements illustrated in the transform hierarchy 200
are merely examples of elements included in a transform
hierarchy. Embodiments of the invention equally apply to
transform hierarchies where some of the elements are omitted
and other elements are added to the transform hierarchy 200.
Conventional approaches to performing affine transforma-
tions, such as rotating, scaling, shearing, and/or translating,
are well-known. In one embodiment, a transform matrix may
be applied to one or more of the elements in the transform
hierarchy 200 to affect the affine transformation. For
example, if an animator wishes to rotate the torso 208 of the
character, then the animator may apply a rotational affine
transformation matrix to the torso 208. In one embodiment,
once of the torso 208 is rotated, the other elements in the
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transform hierarchy 200 that are subordinate to the torso 208
are also rotated to correspond with the rotation of the torso
208.

As also shown in FIG. 2A, the deform hierarchy 250
includes a twist deformer 252, a stretch deformer 254, a relax
deformer 258, and an other non-affine deformer 258. In one
embodiment, the deformers in the deform hierarchy 250 are
organized in a hierarchical order, with the relax deformer 256
being the lowest-level deformer and the other non-affine
deformer 258 being the highest-level deformer. Such a hier-
archical order may be referred to as a “bottom-up” approach.
In an alternate embodiment, the other non-affine deformer
258 is the lowest-level deformer in the hierarchy and the relax
deformer 256 is the highest-level deformer in the hierarchy.
Such an alternate hierarchical order may be referred to as a
“top-down” approach. As should be understood by those hav-
ing ordinary skill in the art, additional non-affine deformers
may be included in the deform hierarchy 250. Examples of
non-affine deformers include, without limitation, a bend
deformer, a bow deformer, a lattice deformer, a squetch
deformer, a relax deformer, a repulse deformer, an attach-
_points deformer, a copy_subdiv_points deformer, a curve-
_deform deformer, a curve_fit deformer, a cylinder_deform
deformer, a frame_deform deformer, a joint_mover deformer,
a lattice_deform deformer, a multi_rotate deformer, a multi-
_sculpt deformer, a radial_reformer deformer, a radial_rotate
deformer, a radial_squetch deformer, a rotate deformer, a
scale deformer, a sculpt_deform deformer, a single_rotate
deformer, a std_animation_variables deformer, a subdi-
v_warp deformer, a surface_deform deformer, a tet_warp
deformer, a transform_deform deformer, a translate
deformer, and a volume_warp_deform deformer.

In one embodiment, the animator or articulator can choose
to apply various non-affine deformers to elements in the
transform hierarchy 200. Conventional approaches to per-
forming non-affine deformations involve data flow graphs.
These conventional approaches are very inefficient, as
described above.

InFIG. 2A, the relax deformer 256 is applied to the left arm
210 and to the left hand 212. The stretch deformer 254 is
applied to the left hand 210. The twist deformer 252 is also
applied to left hand 210. The other non-affine deformer 258 is
applied to the body 204. When a non-affine deformer is
applied to an element in the transform hierarchy 200, the
points defining the element are updated to reflect a change in
position based on the characteristics of the deformer being
applied. Additionally, subordinate elements to the deformed
element are “moved” in a rigid manner to correspond to the
changes in the deformed element, but are not themselves
deformed. For example, when the left arm 210 is twisted by
the twist deformer 252, the points that define the left arm 210
are twisted in a manner associated with the twist deformer
252. The left hand 212 is not twisted by the twist deformer
252. However, the points that define the left hand 212 are
rotated or moved to maintain coherence with the updated
points of the twisted left arm 210. As will be described in
greater detail herein, embodiments of the invention provide
one or more techniques for efficiently applying non-affine
deformations, represented the deform hierarchy 250, to cer-
tain elements in a transform hierarchy 200.

FIG. 3 is a flow diagram of method steps for efficiently
applying non-affine deformations to elements in the trans-
form hierarchy 200. Persons skilled in the art will understand
that, even though the method 300 is described in conjunction
with the systems of FIGS. 1 and 2, any system configured to
perform the method steps, in any order, is within the scope of
embodiments of the invention.
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As shown, the method 300 begins at step 302, where a
software application parses a scene description for elements
and deformers. The software application may be stored in the
system memory 104 and executed by the CPU 102 and/or the
display processor 112. In one embodiment, the software
application is a rendering application executed by the CPU
102. As described herein, the scene description includes geo-
metric elements that define a transform hierarchy. Addition-
ally, the scene description may include deformers that are to
be applied to the geometric elements in the scene description.

At step 304, for each element in the scene description, the
software application sets a coordinate space bit to “local.”” In
one embodiment, each element in the transform hierarchy
may be designated with a coordinate space bitthat is either set
to “local,” representing local space coordinates, or “world,”
representing world space coordinates. As persons having
ordinary skill in the art would understand, when an element is
represented in local coordinate space, the points that define
the element have coordinates relative a local origin particular
to the element. For example, a left hand may be defined by a
series of points. When the left hand is in local coordinate
space, the coordinates of the points that define the left hand
are defined using a coordinate axis with an origin relative to
just the left hand. In contrast, when an element is in world
coordinate space, the points that define the element have
coordinates relative to a global origin particular to the entire
scene (or to the entire character, for example).

Atstep 306, the software application determines the lowest
level deformer not yet processed. In one embodiment, deter-
mining the lowest level deformer may be performed by ana-
lyzing the deform hierarchy to determine what is the lowest
deformer in the deform hierarchy. At step 308, the software
application determines a set of elements to be deformed by
the deformer determined at step 306. Referring to FIG. 2A,
the set of elements to be deformed by the relax deformer 256
includes the left arm 210 and left hand 212. In contrast, the set
of elements to be deformed by the stretch deformer 234
includes the left arm 210, but does not include the left hand
212.

At step 310, the software application selects a first element
in the set of elements. At step 312, the software application
determines if the first element is represented in local coordi-
nate space or world coordinate space. In one embodiment,
step 312 may be performed by checking the coordinate space
bit associated with the first element. If, at step 312, the ele-
ment is in world space, then the method 300 proceeds to step
318. If, at step 312, the element is in local space, then the
method 300 proceeds to step 314.

At step 314, the software application converts points of the
first element to world space coordinates. Various techniques
are known in the art for performing a conversion from local
coordinate space to world coordinate space, and vise-versa.
Additionally, at step 314, the software application determines
whether any elements receive move propagation from the
element converted to world coordinate space. If the software
application determines that no other elements receive move
propagation from element converted to world coordinate
space, then the method proceeds to step 316. If the software
application determines that at least one element receives
move propagation from element converted to world coordi-
nate space, then move propagation is performed. For
example, referring to FIG. 2A, if the deformer being applied
is the stretch deformer 254 (applied to left arm 210), then the
points in the left arm are converted to world space coordi-
nates. Additionally, since the left hand 212 is subordinate to
the left hand 210 in the transform hierarchy 200, the points
defining the left hand 210 receive move propagation from the
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left arm 210. Although the points in the left hand 212 are not
deformed by the stretch deformer 254, the points in the left
hand 212 are moved to a different position based on the
change in position of the points in the left arm 210.

At step 316, the coordinate space bit associated with the
first element is set to “world.” As described in relation to step
304, each element in the transform hierarchy may be associ-
ated with a coordinate space bit. Once the points of a particu-
lar element are converted to world space coordinates at step
314, then the coordinate space bit associated with the particu-
lar element is set to “world” to maintain consistency. At step
318, the software application determines whether any other
elements are included in the set of elements. If no other
elements are included in the set of elements, then the method
300 proceeds to step 322. In alternative embodiments, step
318 is omitted from the method 300 and the steps 312, 314,
and 316 are performed for a single element in the set of
elements.

If, at step 318, the software application determines that one
or more additional elements are included in the set of ele-
ments, then the method 300 proceeds to step 320. At step 320,
the software application selects the next element in the set of
elements. The method 300 then returns to step 312. When
viewed collectively, steps 310, 312, 314, 316, 318, and 320,
operate to convert each of the elements included in the set of
elements to world space coordinates. Each element in the set
of'elements is converted to world space coordinates since the
deformer that is to be applied to the elements in the set of
elements operates in world space coordinates and not in local
space coordinates. Additionally, as described above in rela-
tion to step 312, if an element is already in world space
coordinates, no conversion is necessary. By maintaining the
coordinate space bit that identifies whether the points of the
element are in local space or world space, less coordinate
space conversions are performed, thereby increasing the
computational efficiency of applying the non-affine
deformer. In still further embodiments, steps 312, 314, and
316 are performed for some, but not all, of the elements in the
set of elements.

At step 322, the software application determines whether
any elements not being deformed by the deformer are in
world space and whether any such elements are subordinate
to any element in the set of elements. Similar to the operation
at step 312, the operation at step 322 may be performed by
checking the coordinate space bit associated with the other
elements in the transform hierarchy. If, at step 322, the soft-
ware application determines that no other elements are in
world space besides those included in the set of elements,
then the method 300 proceeds to step 328. If, on the other
hand, the software application determines that at least one
other element besides those elements included in the set of
elements is in world space and is subordinate to one of the
elements in the set of elements, then the method 300 proceeds
to step 324. Importantly, if the software application deter-
mines that at least one other element besides those elements
included in the set of elements is in world space, but such an
element is not subordinate to one of the elements in the set of
elements, then the method 300 proceeds to step 328. Thus,
unnecessary conversions between local and world coordinate
space are minimized. An example illustrating these advan-
tages is described in greater detail below in FIG. 2B.

At step 324, the software application converts the points
associated with each element that is in world space and that is
subordinate to at least one element in the set of elements to
local space coordinates. Again, similar to step 314, various
techniques for performing the conversion at step 324 are
known in the art. At step 326, the software application sets the
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coordinate space bit associated with each element converted
at step 324 to “local.”” After step 326, the method 300 proceeds
to step 328.

At step 328, the software application performs the defor-
mation associated with the lowest level deformer (determined
at step 306) to each element that is in the set of elements.
Various techniques are known for performing the deforma-
tion described in step 328. Again, examples of deformations
include a relax operation, a stretch operation, a twist opera-
tion, a bulge operation, or any other non-affine deformation.
In one embodiment, other elements may be in world coordi-
nate space, but are not deformed by the lowest level deformer
since these elements are not included in the set of elements.
An example is described in greater detail below in FIG. 2B.

At step 330, the software application determines whether
any other deformers are included in the deform hierarchy 250
that have not yet been processed. If the software application
determines that there are no other such deformers, then the
method 300 terminates. If the software application deter-
mines that other deformers are included in the deform hier-
archy 250 that have not yet been processed, then the method
300 returns to step 306, described above.

The method 300 described above provides several advan-
tages over conventional approaches to performing deforma-
tions to elements in the transform hierarchy. As described,
only those elements that are to be deformed by a particular
deformer are converted to world space coordinates to com-
plete the deformation. Other elements that are not deformed
are not converted to world space coordinates, thus saving
computational cost. Additionally, an element that is already in
world space coordinates is not naively converted back to local
space coordinates when further deformations may be per-
formed for that particular element. These features and advan-
tages of the method 300 are clearly illustrated by way of an
examples described in detail below.

For example, the method 300 can be applied to deform one
or more of the elements included in the transform hierarchy
200 based on the deform hierarchy 250, described above in
FIG. 2A. As shown in FIG. 2A, the relax deformer 256 is
applied to left arm 210 and to left hand 212, whereas the
stretch deformer 254 and the twist deformer 252 are applied
to the left arm 210. Additionally, the other non-affine defor-
mation 258 is applied to the body 204.

Referring to the method 300 described in FIG. 3, the scene
description is parsed to determine the transform hierarchy
200 and the listing of deformers included in the deformer
hierarchy 250 (step 302). Each of the elements in the trans-
form hierarchy 200 is in local coordinate space, and the
coordinate space bit associated with each element is set to
“local” (step 304). The software application determines that
the relax operator 256 is the lowest level deformer not yet
processed (step 306). Then, the software application deter-
mines that the left hand 212 and the left arm 210 are included
in the set of elements to be deformed by the relax deformer
(step 308), and converts the points included in the left hand
212 and the left arm 210 to world space coordinates (steps
310, 312, 314, 316, 318).

The software application then determines that no other
elements are in world space (step 322) and performs the relax
deformation to the points in the left hand 212 and the left arm
210 (step 328).

Next, the software application determines that the stretch
deformer 254 is the next lowest level deformer not yet pro-
cessed (step 306). The software application determines that
the set of elements to which the stretch deformer 254 is
applied includes the left arm 210 (step 308). The software
application also determines that the left arm 210 is already in

10

15

20

25

30

35

40

45

50

55

60

65

10

world space coordinates (step 312) and that no other elements
are included in the set of elements deformed by the stretch
deformer 254 (step 318). The software application then deter-
mines that at least one other element that is subordinate to at
least one element in the set of elements is currently in world
space, but not to be deformed by stretch deformer 254,
namely the left hand 212 (step 322). Thus, the software appli-
cation converts the points in the left hand 212 to local space
(steps 324, 326).

The stretch operation is then performed upon the left arm
210 (step 328). Next, the software application determines that
the twist deformer 252 is the next lowest-level deformer not
yet processed (step 306). The software application deter-
mines that the set of elements to which the twist deformer 252
is applied includes left arm 210 (step 308). The software
application also determines that the left arm 210 is already in
world space coordinates (step 312) and that no other elements
are included in the set of elements deformed by the twist
deformer 252 (step 318). The software application then deter-
mines that no other elements are currently in world space
besides those elements to be deformed by twist deformer 252
(step 322). The twist operation is then performed upon the left
arm 210 (step 328).

Next, the software application determines that the other
non-affine deformer 258 is the next lowest-level deformer not
yet processed (step 306). The software application deter-
mines that the set of elements to which the other non-affine
deformer 258 is applied includes the body 204 (step 308). The
software application also determines that the body 204 is in
local space coordinates (step 312) and converts the points of
the body 204 to world space coordinates (steps 314, 316). The
elements that are subordinate to the body 204 receive move
propagation from the body 204. The software application
then determines that other elements that are subordinate to the
body 204 are currently in world space, but not to be deformed
by the other non-affine deformer 258, namely the left arm 210
(step 322). Thus, the software application converts the points
in the left arm 210 to local space (steps 324, 326). The other
non-affine deformer 258 is then applied to the body 204 (step
328). The software application determines that no other
deformers remain to be processed (step 330) and the method
300 terminates.

Another example of applying the method 300 to a trans-
form hierarchy is described in relation to FIG. 2B. FIG. 2B is
a conceptual diagram illustrating a transform hierarchy 200
and a deform hierarchy 250, according to various embodi-
ments of the invention. As shown, the transform hierarchy
includes the same elements described in FIG. 2A. The deform
hierarchy 250 includes the deformers 252, 254, 256, and 258
(shown in FIG. 2A) and also includes additional deformers
260 and 262.

In the example described below, the deformers in the
deform hierarchy 250 are listed bottom-up, where the
deformer 262 is the first deformed to be processed, followed
by the deformer 260, and so on.

Referring to the method 300 described in FIG. 3, the scene
description is parsed to determine the transform hierarchy
200 and the listing of deformers included in the deformer
hierarchy 250, as shown in FIG. 2B (step 302). Each of the
elements in the transform hierarchy 200 is in local coordinate
space, and the coordinate space bit associated with each ele-
ment is set to “local” (step 304). The software application
determines that the deformer 262 is the lowest level deformer
not yet processed (step 306). Then, the software application
determines that the left hand 212 is included in the set of
elements to be deformed by the deformer 262 (step 308), and
converts the points included in the left hand 212 to world
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space coordinates (steps 310, 312, 314, 316, 318). The soft-
ware application then determines that no other elements are in
world space (step 322) and performs the deformation associ-
ated with the deformer 262 to the points in the left hand 212
(step 328).

Next, the software application determines that the
deformer 260 is the next lowest level deformer not yet pro-
cessed (step 306). The software application determines that
the set of elements to which the deformer 260 is applied
includes the right arm 214 (step 308), and converts the points
included in the right arm 214 to world space coordinates
(steps 310, 312, 314, 316, 318).

The software application also determines that the left hand
212 is already in world space coordinates (step 322), but the
lefthand 212 is not subordinate to the right arm 214. Thus, the
points in the left hand 212 remain in world space. Greater
computational efficiency is achieved here since the points in
the left hand remain in world coordinate space and are not
naively converted back to local coordinate space. The defor-
mation associated with the deformer 260 is then performed
upon the right arm 214 (step 328). The remaining steps per-
formed to complete the deformations may be substantially
similar to those described in the example above that refers to
FIG. 2A, with modifications for returning the right arm 214
back to local coordinate space when appropriate.

In one embodiment, the method 300 described in FIG. 3
provides a “bottom-up” approach to performing deforma-
tions to elements included in the transform hierarchy 200. As
described in step 306, the software application processes the
deformations beginning with the lowest level of deformer not
yet processed and moving up the deform hierarchy 250. In
alternative embodiments, at step 306, rather than determining
the lowest level deformer not yet processed, the software
application may determine the highest level to former not yet
processed. In these embodiments, the method 300 provides a
“top-down” approach to performing deformations. For
example, in a top-down approach, the other non-affine
deformer 258 may be the first deformer applied to the trans-
form hierarchy 200. The twist deformer 252, the stretch
deformer 254, and the relax deformer 256, are subsequently
processed in turn.

Additionally, in some embodiments, when the scene
description is parsed by the software application at step 302,
the result is a point pool that includes points associated with
each element included in the transform hierarchy 200. In one
embodiment, each of the points included in the point pool is
represented in local coordinate space. Since the deformers
may be applied to only a portion of the elements in the
transform hierarchy 200, some of the points in the point pool
are not converted to world space coordinates during applica-
tion for the deformers. In other embodiments, when the scene
description is parsed at step 302, the resulting point pool may
include only points associated with elements in the transform
hierarchy 200 that are actually deformed by the deformers
included in the deform hierarchy 250. As should be under-
stood by those having ordinary skill in the art, various other
parsing techniques and implementations are also within the
scope of embodiments of the invention.

Additionally, in still further embodiments, a character rep-
resented by the transform hierarchy 200 is converted to world
space coordinates to achieve a final rendered output of the
character after the completion of processing of the various
deformers. In other embodiments, after the deformers have
each been applied, the points associated with the character
remain in local coordinate space and are stored in a memory.
The final rendered output may then be generated by a soft-
ware rendering engine, a hardware rendering engine, or a
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combination of a software and hardware rendering engine.
The rendering engine used to generate the final rendered
output of the character may reside in a separate computer
system from the computer system that performs the deforma-
tions described in FIG. 3. For example, the final rendered
output may be generated by a real-time rendering engine,
such as a game engine.

In still further embodiments, one or more of the steps
described in the method 300 are performed by fixed-function
and/or programmable hardware elements, and not by a soft-
ware application. In still further embodiments, one or more of
the steps described in the method 300 are performed by a
combination of software and hardware.

Advantageously, embodiments of the invention provide an
improved technique for efficiently performing non-affine
deformations to elements included in a transform hierarchy.
The elements that are deformed are converted to world space
coordinates, while the elements that are not deformed remain
in local space coordinates. Computational cost is minimized
by converting only those elements necessary to perform the
deformations. Additionally, embodiments of the invention
convert elements from world space coordinates back to local
space coordinates once no further deformations are to be
performed upon those elements. Thus, computational cost is
further minimized by selectively converting to local space
only those elements that are not deformed by subsequent
deformations. Accordingly, the techniques described herein
provide a more efficient processing technique to performing
non-affine deformations to elements in a transform hierarchy
when compared to prior art techniques.

Various embodiments of the invention may be imple-
mented as a program product for use with a computer system.
The program(s) of the program product define functions of
the embodiments (including the methods described herein)
and can be contained on a variety of computer-readable stor-
age media. [llustrative computer-readable storage media
include, but are not limited to: (i) non-writable storage media
(e.g., read-only memory devices within a computer such as
CD-ROM disks readable by a CD-ROM drive, flash memory,
ROM chips or any type of solid-state non-volatile semicon-
ductor memory) on which information is permanently stored;
and (ii) writable storage media (e.g., floppy disks within a
diskette drive or hard-disk drive or any type of solid-state
random-access semiconductor memory) on which alterable
information is stored.

The invention has been described above with reference to
specific embodiments and numerous specific details are set
forth to provide a more thorough understanding of the inven-
tion. Persons skilled in the art, however, will understand that
various modifications and changes may be made thereto with-
out departing from the broader spirit and scope of the inven-
tion. The foregoing description and drawings are, accord-
ingly, to be regarded in an illustrative rather than a restrictive
sense.

What is claimed is:
1. A computer implemented method for applying deforma-
tions to a hierarchy of elements, the method comprising:

receiving an element hierarchy for an object in a scene,
wherein points for each element of the object are ini-
tially represented using a local coordinate space in
which the points for the element have coordinates
defined relative to a local origin for the element;

determining, by operation of one or more computer pro-
cessors, a first non-affine deformer to be applied to a first
one or more of the elements of the object, wherein the
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non-affine deformer operates in a world coordinate
space in which points have coordinates defined relative
to a global origin;

for each element of the first one or more of the elements:

converting the points of the element into the world coor-
dinate space, and
upon determining the element has one or more subordi-
nate elements in the element hierarchy to which the
non-affine deformer is not applied:
converting points of each of the one or more subordi-
nate elements to a local coordinate space for the
subordinate element if the points are currently rep-
resented using the world coordinate space; and
marking the one or more subordinate elements to
receive move propagation when the non-affine
deformer is applied to the element but not applied
to the one or more subordinate elements; and
applying, by operation of the computer processors, the first
non-affine deformer to the first one or more elements of
the object in the world coordinate space.
2. The method of claim 1, further comprising:
following the application of the deformer to the determined
one or more elements, applying the move propagation to
each of the one or more subordinate elements.

3. The method of claim 1, further comprising:

determining a second non-affine deformer to be applied to

a second one or more of the elements of the object; and
for each of the second one or more elements to which the
second non-affine deformer is to be applied:
in response to identifying that points of the element are
currently represented using the local coordinate
space, converting the points of the element to the
world coordinate space.
4. The method of claim 3, further comprising, applying the
second non-affine deformer to the second one or more ele-
ments.
5. The method of claim 3, wherein the second non-affine
deformer is subordinate to the first non-affine deformer in a
deformer hierarchy associated with the scene.
6. The method of claim 1, wherein the first non-affine
deformer causes a non-linear operation to be performed to the
points of the first one or more elements in the world coordi-
nate space.
7. The method of claim 6, wherein the first non-affine
deformer comprises a bend deformer, a bow deformer, a
lattice deformer, a stretch deformer, a relax deformer, or a
repulse deformer.
8. A non-transitory computer-readable storage medium
storing one or more applications, which, when executed on a
processor, perform an operation for applying deformations to
a hierarchy of elements, the operation comprising:
receiving an element hierarchy for an object in a scene,
wherein points for each element of the object are ini-
tially represented using a local coordinate space in
which the points for the element have coordinates
defined relative to a local origin for the element;

determining, by operation of one or more computer pro-
cessors, a first non-affine deformer to be applied to a first
one or more of the elements of the object, wherein the
non-affine deformer operates in a world coordinate
space in which points have coordinates defined relative
to a global origin;

for each element of the first one or more of the elements:

converting the points of the element into the world coor-
dinate space, and
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upon determining the element has one or more subordi-
nate elements in the element hierarchy to which the
non-affine deformer is not applied:
converting points of each of the one or more subordi-
nate elements to a local coordinate space for the
subordinate element if the points are currently rep-
resented using the world coordinate space; and
marking the one or more subordinate elements to
receive move propagation when the non-affine
deformer is applied to the element but not applied
to the one or more subordinate elements; and
applying, by operation of the computer processors, the first
non-affine deformer to the first one or more elements of
the object in the world coordinate space.

9. The computer-readable storage medium of claim 8,
wherein the operation further comprises:

following the application of the deformer to the determined

one or more elements, applying the move propagation to
each of the one or more subordinate elements.

10. The computer-readable storage medium of claim 8,
wherein the operation further comprises:

determining a second non-affine deformer to be applied to

a second one or more of the elements of the object; and
for each of the second one or more elements to which the
second non-affine deformer is to be applied:
in response to identifying that points of the element are
currently represented using the local coordinate
space, converting the points of the element to the
world coordinate space.

11. The computer-readable storage medium of claim 10,
wherein the operation further comprises, applying the second
non-affine deformer to the second one or more elements.

12. The computer-readable storage medium of claim 10,
wherein the second non-affine deformer is subordinate to the
first non-affine deformer in a deformer hierarchy associated
with the scene.

13. The computer-readable storage medium of claim 8,
wherein the first non-affine deformer causes a non-linear
operation to be performed to the points of the first one or more
elements in the world coordinate space.

14. The computer-readable storage medium of claim 13,
wherein the first non-affine deformer comprises a bend
deformer, a bow deformer, a lattice deformer, a stretch
deformer, a relax deformer, or a repulse deformer.

15. A system, comprising:

a processor; and

a memory storing one or more applications, which, when

executed on the processor, perform an operation for
applying deformations to a hierarchy of elements, the
operation comprising:
receiving an element hierarchy for an object in a scene,
wherein points for each element of the object are
initially represented using a local coordinate space in
which the points for the element have coordinates
defined relative to a local origin for the element,
determining, by the processor, a first non-affine
deformer to be applied to a first one or more of the
elements of the object, wherein the non-affine
deformer operates in a world coordinate space in
which points have coordinates defined relative to a
global origin,
for each element of the first one or more of the elements:
converting the points of the element into the world
coordinate space; and
upon determining the element has one or more sub-
ordinate elements in the element hierarchy to
which the non-affine deformer is not applied:
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converting points of each of the one or more sub-
ordinate elements to a local coordinate space for
the subordinate element if the points are cur-
rently represented using the world coordinate
space, and
marking the one or more subordinate elements to
receive move propagation when the non-affine
deformer is applied to the element but not
applied to the one or more subordinate elements,
and
applying, by operation of the computer processors, the
first non-affine deformer to the first one or more ele-
ments of the object in the world coordinate space.
16. The system of claim 15, wherein the operation further
comprises:
following the application of the deformer to the determined
one or more elements, applying the move propagation to
each of the one or more subordinate elements.
17. The system of claim 15, wherein the operation further
comprises:
determining a second non-affine deformer to be applied to
a second one or more of the elements of the object; and
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for each of the second one or more elements to which the
second non-affine deformer is to be applied:
in response to identifying that points of the element are
currently represented using the local coordinate
space, converting the points of the element to the
world coordinate space.

18. The system of claim 17, wherein the operation further
comprises, applying the second non-affine deformer to the
second one or more elements.

19. The system of claim 17, wherein the second non-affine
deformer is subordinate to the first non-affine deformer in a
deformer hierarchy associated with the scene.

20. The system of claim 15, wherein the first non-affine
deformer causes a non-linear operation to be performed to the
points of the first one or more elements in the world coordi-
nate space.

21. The system of claim 20, wherein the first non-affine
deformer comprises a bend deformer, a bow deformer, a
lattice deformer, a stretch deformer, a relax deformer, or a
repulse deformer.
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